Jump to:
Peer-reviewed articles
2024
Al Atrach,M., Phan.C-M., Jones,L.
Extended release of ciprofloxacin from commercial contact lenses containing vitamin E diffusion barriers
Optometry and Vision Science 2024;Online ahead of print
[ Show Abstract ]
SIGNIFICANCE
Vitamin E could be used as a coating with commercial silicone hydrogel lenses to extend the release of various ophthalmic drugs. This concept could provide a promising approach to improve overall ocular therapeutic outcomes for topical ocular drugs.
PURPOSE
This study aimed to develop a contact lens–based ocular drug delivery system using vitamin E as a diffusion barrier to extend the release duration of ciprofloxacin.
METHODS
Five commercial lenses were soaked for 24 hours in various concentrations of vitamin E dissolved in ethanol (0.0125 to 0.2 g/mL). The lenses were loaded with ciprofloxacin for 24 hours in 3 mL of 3 mg/mL of ciprofloxacin/acetic acid solution. The drug release was evaluated in 3 mL of phosphate-buffered saline solution. At t = 0.5, 1, 2, 4, 6, 8, 12, 16, and 24 hours, the amount of ciprofloxacin released was measured using a UV-VIS spectrophotometer at 270 nm.
RESULTS
There was a decrease in ciprofloxacin loading with increasing amounts of vitamin E loaded into the silicone hydrogel lenses. For each lens type, there was an optimal amount of vitamin E loaded that extended the release duration of the drug from 1 hour (without vitamin E) to as long as 16 hours. In contrast, vitamin E loaded into hydrogel lenses had no effect on the amounts of drugs loaded or the release duration.
CONCLUSIONS
Vitamin E can be used as a diffusion barrier with commercially available silicone hydrogel lenses to provide sustained release of ciprofloxacin. The results suggest that vitamin E may form blockages in channels within a silicone hydrogel lens material, thereby forcing a longer path for drugs to diffuse into and out of the lens material. There is an optimal amount of vitamin E that needs to be loaded to extend the release duration, and this is lens material dependent.