Jump to:

Peer-reviewed articles


Phan,C. M., Chan,V. W. Y., Drolle,E., Hui,A., Ngo,W., Bose,S., Shows,A., Liang,S., Sharma,B., Subbaraman,L., Zheng,Y., Shi,X., Wu,J., Jones,L. At this time no specific clinical outcome instrument can be recommended on the basis of an evidence-based review of the literature, but the CLDEQ-8 best approaches the most validated measure Contact Lens Anterior Eye 2024;47(2):102129 [ Show Abstract ]

To evaluate the in vitro wettability and coefficient of friction of a novel amphiphilic polymeric surfactant (APS), poly(oxyethylene)–co-poly(oxybutylene) (PEO-PBO) releasing silicone hydrogel (SiHy) contact lens material (serafilcon A), compared to other reusable SiHy lens materials.

The release of fluorescently-labelled nitrobenzoxadiazole (NBD)-PEO-PBO was evaluated from serafilcon A over 7 days in a vial. The wettability and coefficient of friction of serafilcon A and three contemporary SiHy contact lens materials (senofilcon A; samfilcon A; comfilcon A) were evaluated using an in vitro blink model over their recommended wearing period; t = 0, 1, 7, 14 days for all lens types and t = 30 days for samfilcon A and comfilcon A (n = 4). Sessile drop contact angles were determined and in vitro non-invasive keratographic break-up time (NIKBUT) measurements were assessed on a blink model via the OCULUS Keratograph 5 M. The coefficient of friction was measured using a nano tribometer.

The relative fluorescence of NBD-PEO-PBO decreased in serafilcon A by approximately 18 % after 7 days. The amount of NBD-PEO-PBO released on day 7 was 50 % less than the amount released on day 1 (6.5±1.0 vs 3.4±0.5 µg/lens). The reduction in PEO-PBO in the lens also coincided with an increase in contact angles for serafilcon A after 7 days (p 0.05). The other contact lens materials had stable contact angles and NIKBUT over their recommended wearing period (p > 0.05), with the exception of samfilcon A, which had an increase in contact angle after 14 days as compared to t = 0 (p < 0.05). Senofilcon A and samfilcon A also showed an increase in coefficient of friction at 14 and 30 days, respectively, compared to their blister pack values (p < 0.05).

The results indicate that serafilcon A gradually depletes its reserve of PEO-PBO over 1 week, but this decrease did not significantly change the lens performance in vitro during this time frame.


Kondela,T., Dushanov,E., Vorobyeva,M., Mamatkulov,K., Drolle,E., Soloviov,D., Hrubovcak,P., Kholmurodov,K., Arzumanyan,G., Leonenko,Z., Kucerka,N Investigating the competitive effects of cholesterol and melatonin in model lipid membranes Biochimica et Biophysica Acta - Biomembranes 2021;1863(9):183651 [ Show Abstract ]

We have studied the impact of cholesterol and/or melatonin on the static and dynamical properties of bilayers made of DPPC or DOPC utilizing neutron scattering techniques, Raman spectroscopy and molecular dynamics simulations. While differing in the amplitude of the effect due to cholesterol or melatonin when comparing their interactions with the two lipids, their addition ensued recognizable changes to both types of bilayers. As expected, based on the two-component systems of lipid/cholesterol or lipid/melatonin studied previously, we show the impact of cholesterol and melatonin being opposite and competitive in the case of three-component systems of lipid/cholesterol/melatonin. The effect of cholesterol appears to prevail over that of melatonin in the case of structural properties of DPPC-based bilayers, which can be explained by its interactions targeting primarily the saturated lipid chains. The dynamics of hydrocarbon chains represented by the ratio of trans/gauche conformers reveals the competitive effect of cholesterol and melatonin being somewhat more balanced. The additive yet opposing effects of cholesterol and melatonin have been observed also in the case of structural properties of DOPC-based bilayers. We report that cholesterol induced an increase in bilayer thickness, while melatonin induced a decrease in bilayer thickness in the three-component systems of DOPC/cholesterol/melatonin. Commensurately, by evaluating the projected area of DOPC, we demonstrate a lipid area decrease with an increasing concentration of cholesterol, and a lipid area increase with an increasing concentration of melatonin. The demonstrated condensing effect of cholesterol and the fluidizing effect of melatonin appear in an additive manner upon their mutual presence.

Yamasaki,K., Drolle,E., Nakagawa,H., Hisamuare,R., Ngo,W., Jones,L. W. Impact of a low molecular weight hyaluronic acid derivative on contact lens wettability Cont Lens Anterior Eye 2021;44(3):101334 [ Show Abstract ]

To investigate the interaction of a novel low molecular weight hyaluronic acid derivative containing hydrophobic groups with soft contact lenses and its effect on lens hydrophilicity compared with a conventional form of hyaluronic acid.

This investigation studied the uptake of fluorescently-labelled hyaluronic acid and a low molecular weight hyaluronic acid derivative to four types of contact lenses using fluorescent microscopy and confocal laser scanning microscopy. Further, the four lens types were used to compare efficacy in improving hydrophilicity, as well as maintenance of contact angle measurements, in commercially available multipurpose solutions that contained either hyaluronic acid, the low molecular weight hyaluronic acid derivative, or an alternative wetting agent.

The low molecular weight hyaluronic acid derivative was found to sorb more readily to silicone hydrogel lenses and exhibit a greater accumulation over time than conventional hyaluronic acid. Multipurpose solutions containing the low molecular weight hyaluronic acid derivative showed an increase in lens hydrophilicity through decreases in contact angle measurements when compared with those obtained from lenses treated with multipurpose solutions containing conventional hyaluronic acid or alternative wetting agents. This increase in lens hydrophilicity associated with the low molecular weight hyaluronic acid derivative was also maintained over multiple cycles in phosphate buffered saline, while alternative solutions with conventional hyaluronic acid did not.

Overall, lens treatment using a low molecular weight hyaluronic acid derivative-based solution lead to improved in vitro lens hydrophilicity.


Drolle,E., Ngo,W., Leonenko,Z., Subbaraman,L., Jones,L. Nanoscale Characteristics of Ocular Lipid Thin Films Using Kelvin Probe Force Microscopy 2020;9(7):1-11 [ Show Abstract ]

Purpose: To describe the use of Kelvin probe force microscopy (KPFM) to investigate the electrical surface potential of human meibum and to demonstrate successful use of this instrument on both human meibum and a meibum model system (six-lipid stock [6LS]) to elucidate nanoscale surface chemistry and self-assembly characteristics.

Materials and Methods: 6LS and meibum were analyzed in this study. Mica-supported thin films were created using the Langmuir-Blodgett trough. Topography and electrical surface potential were quantified using simultaneous atomic force microscopy/KPFM imaging.

Results: Both lipid mixtures formed thin film patches on the surface of the mica substrate, with large aggregates resting atop. The 6LS had aggregate heights ranging from 41 to 153 nm. The range in surface potential was 33.0 to 125.9 mV. The meibum thin films at P = 5 mN/m had aggregates of 170 to 459 nm in height and surface poten- tial ranging from 15.9 to 76.1 mV, while thin films at P = 10 mN/m showed an aggregate size range of 147 to 407 nm and a surface potential range of 11.5 to 255.1 mV.

Conclusions: This study showed imaging of the differences in electrical surface poten- tial of meibum via KPFM and showed similarities in nanoscale topography. 6LS was also successfully analyzed, showing the capabilities of this method for use in both in vitro and ex vivo ocular research.

Translational Relevance: This study describes the use of KPFM for the study of ocular surface lipids for the first time and outlines possibilities for future studies to be carried out using this concept.

Luensmann,D., Omali,N. B., Suko,A., Drolle,E., Heynen,M., Subbaraman,L. S., Scales,C., Fadli,Z., Jones,L. Kinetic Deposition of Polar and Non-polar Lipids on Silicone Hydrogel Contact Lenses Current Eye Research 2020;45(12):1477-1483 [ Show Abstract ]

Purpose: This study investigated kinetic lipid uptake to four silicone hydrogel (SiHy) lenses over a period of four weeks, using an in-vitro radiolabel method.

Methods: Four contemporary monthly replacement SiHy lenses (lotrafilcon B, senofilcon C, comfilcon A, samfilcon A) were incubated in three different solutions: 1) An artificial tear solution (ATS) containing 14C-labeled phosphatidylcholine (PC), 2) an ATS containing 14C-cholesteryl oleate (CO) and 3) an ATS containing four 14C-radiolabeled lipids (PC, phosphatidylethanolamine, CO, and cholesterol (total lipid)). After 16 hours, lipids were extracted twice from the lenses with chloroform:methanol and the radioactive counts determined the lipid quantities to simulate 1 day of wear. OPTI-FREE PureMoist (Alcon) was used to clean and disinfect the remaining lenses daily and the lipid quantities were further determined after 2 weeks and 4 weeks.

Results: The amount of total lipid increased for all lenses over time (p < .01). After four weeks, total lipid accumulated was 20.26 ± 0.15 µg/lens for senofilcon C, which was significantly higher (p < .01) than all other lens materials (samfilcon A - 17.84 ± 0.21; comfilcon A - 16.65 ± 0.12; lotrafilcon B - 7.41 ± 0.56 µg/lens). CO was highest on lotrafilcon B (1.26 ± 0.13 µg/lens) and senofilcon C attracted the most PC (3.95 ± 0.12 µg/lens) compared to the other materials.

Conclusion: The amount of both polar and non-polar lipid deposition on monthly replacement SiHy lenses increased over 4 weeks, with significant differences being seen between lens materials.

Qiao,H., Luensmann,D., Heynen,M., Drolle,E., Subbaraman,L. N., Scales,C., Riederer,D., Fadli,Z., Jones,L. In Vitro Evaluation of the Location of Cholesteryl Ester Deposits on Monthly Replacement Silicone Hydrogel Contact Lens Materials Clinical Ophthalmology 2020;14(September):2821-2828 [ Show Abstract ]

Purpose: The deposition profile of cholesteryl ester on the surface and throughout the matrix of silicone hydrogel contact lens (CL) materials was determined under conditions that mimic a daily wear regimen.

Methods: In this in vitro study, four SiHy CL materials (senofilcon C, lotrafilcon B, comfilcon A and samfilcon A) were incubated in an artificial tear solution (ATS) for up to 30 days. CL incubation was alternated between the ATS (16 hours) and a multipurpose care regimen (8 hours). The ATS included fluorescently tagged cholesteryl ester (5-cholesten-3ß-ol 6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]caproate; CE-NBD) and confocal laser scanning microscopy visualized the distribution of the lipid through the CLs.

Results: The distribution of CE-NBD was homogenous from the anterior to posterior surface in senofilcon C and comfilcon A, at all time points. For lotrafilcon B and samfilcon A, CE-NBD localization was heterogeneous, with greater amounts on the surfaces on Day 1 and Day 14 compared to the lens matrix; however, differences in concentration between the surface and bulk diminished by Day 30.

Conclusion: The distribution of the non-polar lipid CE-NBD varied with lens material chemistry. While some lens materials deposited the lipid primarily on the surface after 16 hours of exposure, all materials exhibited a homogenous distribution after one month.

Keywords: lipid distribution, silicone hydrogel contact lenses, cholesteryl ester, artificial tear solution


Hagedorn,S., Drolle,E., Lorentz,H., Srinivasan,S., Leonenko,Z., Jones,L. Atomic force microscopy and Langmuir-Blodgett monolayer technique to assess contact lens deposits and human meibum extracts Journal of Optometry 2015;8(3):187-199 [ Show Abstract ]

Purpose The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Methods Meibum study: Meibum was collected from all participants and studied via Langmuir-Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Results Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. Conclusions MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. © 2014 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.


Cheung,S., Lorentz,H., Drolle,E., Leonenko,Z., Jones,L. W. Comparative study of lens solutions' ability to remove tear constituents Optometry and Vision Science 2014;91(9):1045-1061 [ Show Abstract ]

PURPOSE: The purpose of this study was to use atomic force microscopy to compare and characterize the cleaning abilities of a hydrogen peroxide-based system (HPS) and a polyhexamethylene biguanide-containing multipurpose solution (MPS) at removing in vitro deposited tear film constituents, as well as to determine deposition patterns on various silicone hydrogel contact lenses. METHODS: Silicone hydrogel materials - balafilcon A (BA), lotrafilcon B (LB), and senofilcon A (SA) - were incubated for 1 week in an artificial tear solution (ATS) containing representative lipids, proteins, and salts from the tear film. Atomic force microscopy was used to resolve each lens before and after being cleaned overnight in HPS or MPS. Atomic force microscopy was used again to resolve HPS/MPS-cleaned lenses, which were reincubated in fresh ATS for 1 week, before and after an overnight clean in their respective cleaning solution. RESULTS: Atomic force microscopy imaging was able to characterize lens deposits with high resolution. Lenses incubated in ATS revealed distinct differences in their deposition pattern across lens materials. The surface of BA contained about 20-nm-high deposits, whereas deposit heights up to 150 nm completely occluded the surface of SA. Lotrafilcon B lenses revealed clusters of deposits up to 90 nm. The use of either lens solution left trace amounts of tear film constituents, although components from the MPS were seen adsorbed onto the surface after cleaning. Surface roughness (Ra) measurements revealed a significant difference between ATS-incubated and HPS/MPS-cleaned SA and LB lenses (p < 0.05). Ra between first incubated and HPS/MPS-cleaned reincubated SA and LB was also significant (p < 0.05). CONCLUSIONS: Unique variations in ATS deposition patterns were seen between lenses with atomic force microscopy. The application of both HPS and MPS removed most visible surface deposits. © American Academy of Optometry.

Scientific Presentations


Chan V, Drolle E, Phan CM, Hui A, Shi C, Subbaraman L, Wu J, Jones L. Evaluating the activity of lysozyme deposited on contemporary reusable silicone hydrogel contact lenses using an in vitro eye model The Association for Research in Vision and Ophthalmology, New Orleans, LA, USA, 2023 [ Show Abstract ][ PDF ]

Purpose: To evaluate lysozyme activity (LA) on five contemporary reusable silicone hydrogel contact lens (CL)materials over their proposed wear period using an advanced in vitro blink model.

Methods: Five CL materials (lotrafilcon B, samfilcon A, comfilcon A, senofilcon A, and serafilcon A) were cycled daily for 16h on an eye model, followed by 8h of soaking in OPTI-FREE PureMoist, to mimic a typical wear cycle. An artificial tear solution containing physiologically representative proteins and lipids was delivered to the model at a rate of 1.2-2.1μl/min. The model includes an artificial eyelid that blinks at a rate of 6blinks/min, which was kept at room temperature and humidity above 50%. Serafilcon A and senofilcon A were tested over 14 days, whereas the other CLs were evaluated for 30 days. At specified time intervals, including after 1, 7, 14 and 30 days, CLs were removed from the model and lysozyme extracted using a solvent containing acetonitrile and trifluoroacetic acid. The LA from the extracts were then evaluated using a micrococcal absorbance assay.

Results: Overall, LA decreased over time, reaching non-detectable levels by day 30 (p<0.05). Serafilcon A (13.9 ± 7.8μg/lens), and samfilcon A (9.6 ± 2.3μg/lens), had the highest LA after 1 day, followed by comfilcon A (4.7 ± 1.8μg/lens), lotrafilcon B (3.3 ± 1.6μg/lens), and senofilcon A (2.2 ± 3.7μg/lens). By day 7, LA for the weekly replacement lens, serafilcon A, decreased to 0.5 ± 0.6μg/lens. By day 14, LA for the biweekly replacement lens, senofilcon A, decreased to 0.6 ± 0.7μg/lens. Lotrafilcon B, samfilcon A, and comfilcon A, all monthly replacement lenses, decreased in activity by day 30 (0.1 ± 0.2μg/lens, 0.5 ± 0.7μg/lens, 0.0 ±0.0μg/lens respectively).

Conclusions: Deposition of biologically active lysozyme has been proposed to be an important factor for biocompatible CL wear. A decline in activity over time as the deposited protein becomes denatured may impact overall CL performance and has been linked to reduced comfort. LA decreases over time and reaches near zero for all lens types by the end of their proposed wearing period, confirming that they should be replaced within their specified replacement intervals. Compared to simple in vitro vial models, using an advanced blink model for CL deposition testing aims to provide more physiologically relevant results prior to clinical testing.


Phan CM, Chan V, Drolle E, Shi C, Subbaraman L, Wu J, Jones L. Evaluating the in vitro wettability of contemporary reusable soft contact lenses using an in vitro blink model American Academy of Optometry, San Diego, 2022 [ Show Abstract ][ PDF ]

Purpose: To evaluate the in vitro wettability of four contemporary reusable soft contact lens materials (serafilcon A, senofilcon A, senofilcon C, lotrafilcon B, comfilcon A) over a 14-day simulated wearing period using a novel, physiologically relevant in vitro eye model.

Methods: The 14-day wearing period was simulated using an in vitro blink model (OcuBlink). A tear mimic solution containing relevant proteins and lipids was delivered to the eye model at a rate of 1.25 -2.25 µL/min. A tear film was created over the lens via an artificial eyelid that slid across an eyeball surface at 6 blinks/minute, with a lens in-situ, at room temperature and humidity above 50%. For each cycling day, the lenses were incubated on the eye model for 16 hours, followed by a 10 second rub-rinse each side with OPTI-FREE PureMoist Solution, and then incubated overnight for 8 hours in the same solution. Lens wettability was quantified at t = 0 (straight from blister pack), 1, 7, and 14 days via two methods, (1) sessile drop contact angle (CA) and (2) non-invasive keratographic tear-break-up time (NIKBUT), n = 4 for each lens type. Contact angles were measured using the Optical Contact Analyzer (DataPhysics, Germany). NIKBUT measurements were assessed on the OcuBlink via the OCULUS Keratograph 5M (OCULUS, Germany).

Results: At t = 0, comfilcon A (24.0 ± 5.3°) had the lowest contact angle, followed by lotrafilcon B (29.6 ± 6.5°), serafilcon A (67.7 ± 16.0°), senofilcon C (89.2 ± 6.0°), and senofilcon A (92.0 ± 3.1°). All contact lens materials had similar CA out of the blister pack compared to 7 days (p >0.05). There was a slight increase in CA between 7-14 days for serafilcon A and lotrafilcon B, but this was not statistically significant (p>0.05). The NIKBUT for all contact lens materials ranged between 4 – 9 seconds, and there were no significant differences between NIKBUT within the same lens type at any time point (p>0.05). NIKBUT at t = 0 was highest for serafilcon A (8.3 ± 1.7 s) (p<0.05), followed by lotrafilcon B (6.3 ± 1.4 s), comfilcon A (6.1 ± 1.5 s), senofilcon A (5.6 ± 1.1 s), and senofilcon C (5.5 ± 0.8 s).

Conclusion: Lenses with a very low CA did not translate into significantly higher NIKBUT. For some lens materials, notably serafilcon A, there was an increase in CA after 7 days of in vitro testing, which warrants further investigation.


Drolle E, Leonenko Z, Subbaraman L, Jones L. Nanoscale Differences in Meibum Thin Films from Dry Eye and Non-Dry Eye Individuals ISCLR, Portland, Oregon, USA, 2017

Drolle E, Leonenko Z, Subbaraman L, Jones L. Nanoscale comparison of meibum and an in vitro lipid model Invest Ophthalmol Vis Sci 2017;E-Abstract 2250


Cheung S, Lorentz H, Drolle E, Leonenko Z, Jones L. Contact lens solution efficacy at removing in vitro tear film constituents from silicone hydrogel contact lenses: An atomic force microscopy study Optom Vis Sci 2013;90: E-Abstract 135010

Cheung S, Lorentz H, Drolle E, Leonenko Z, Jones L. Contact lens solution efficacy at removing in vitro tear film constituents from silicone hydrogel contact lenses: An atomic force microscopy study Canadian Optometry Schools Research Conference, Waterloo, Canada, 2013

Professional Publications


Drolle E. Fast forward to the future - contact lens-based theranostics Contact Lens Spectrum 2022;37, September: 11