Publications
Showing 5 results out of 30 in total.
Wolffsohn,J. S., Berkow,D., Chan,K. Y., Chaurasiya,S. K., Fadel,D., Haddad,M., Imane, T., Jones,L., Sheppard,A. L., Vianya-Estopa,M., Walsh,K., Woods,J., Zeri,F., Morgan,P. B.
BCLA CLEAR Presbyopia: Evaluation and diagnosis
Contact Lens Anterior Eye 2024;47(4):102156 [ Show Abstract ]
It is important to be able to measure the range of clear focus in clinical practice to advise on presbyopia correction techniques and to optimise the correction power. Both subjective and objective techniques are necessary: subjective techniques (such as patient reported outcome questionnaires and defocus curves) assess the impact of presbyopia on a patient and how the combination of residual objective accommodation and their natural DoF work for them; objective techniques (such as autorefraction, corneal topography and lens imaging) allow the clinician to understand how well a technique is working optically and whether it is the right choice or how adjustments can be made to optimise performance. Techniques to assess visual performance and adverse effects must be carefully conducted to gain a reliable end-point, considering the target size, contrast and illumination. Objective techniques are generally more reliable, can help to explain unexpected subjective results and imaging can be a powerful communication tool with patients. A clear diagnosis, excluding factors such as binocular vision issues or digital eye strain that can also cause similar symptoms, is critical for the patient to understand and adapt to presbyopia. Some corrective options are more permanent, such as implanted inlays / intraocular lenses or laser refractive surgery, so the optics can be trialled with contact lenses in advance (including differences between the eyes) to better communicate with the patient how the optics will work for them so they can make an informed choice.
Wong,K-Y., Liu,Y., Phan,C-M., Jones,L., Wong,M-S., Liu,J.
Selection of DNA aptamers for sensing drugs treating eye disease: atropine and timolol maleate
Sensors & Diagnostics 2024;3(10):1679-1688 [ Show Abstract ]
Effective monitoring of ocular drugs is crucial for personalized medicine and improving drug delivery efficacy. However, traditional methods face difficulties in detecting low drug concentrations in small volumes of ocular fluid, such as that found on the ocular surface. In this study, we used capture-SELEX to select aptamers for two commonly used ocular drugs, timolol maleate and atropine. We identified TMJ-1 and AT-1 aptamers with binding affinities of 3.4 μM timolol maleate and 10 μM atropine, respectively. Our label-free TMJ-1 biosensor using thioflavin T staining achieved a limit of detection (LOD) of 0.3 μM for timolol maleate. The AT-1 biosensor showed an LOD of 1 μM for atropine, and exhibited a 10-fold higher sensitivity compared to UV-visible spectroscopy. Future research in this area holds promise in enhancing drug delivery monitoring and improving the treatment of ocular diseases.
Wong,K. Y., Phan,C.M., Chan,Y.T., Chuy-Ying Yuen,A., Zhao,D., Chan,K. Y., Do,C. W., Chuen Lam,T., Han Qiao,J., Wulff,D., Hui,A., Jones,L., Wong,M. S.
A review of using Traditional Chinese Medicine in the management of glaucoma and cataract
Clinical and Experimental Optometry 2024;107(2):156-170 [ Show Abstract ]
Traditional Chinese Medicine has a long history in ophthalmology in China. Over 250 kinds of Traditional Chinese Medicine have been recorded in ancient books for the management of eye diseases, which may provide an alternative or supplement to current ocular therapies. However, the core holistic philosophy of Traditional Chinese Medicine that makes it attractive can also hinder its understanding from a scientific perspective – in particular, determining true cause and effect. This review focused on how Traditional Chinese Medicine could be applied to two prevalent ocular diseases, glaucoma, and cataract. The literature on preclinical and clinical studies in both English and Chinese on the use of Traditional Chinese Medicine to treat these two diseases was reviewed. The pharmacological effects, safety profile, and drug-herb interaction of selected herbal formulas were also investigated. Finally, key considerations for conducting future Traditional Chinese Medicine studies are discussed.
Wu,T.-Y., Huang,C.-C., Tsai,H.C., Lon,T.-K., Chen,P.-Y., Darge,H. F., Hong,Z.-X., Ham,H.-J., Lin,S.-Z., Lai,J.-Y., Chen,Y.-S.
Mucin-mediated mucosal retention via end-terminal modified Pluronic F127-based hydrogel to increase drug accumulation in the lungs
Biomaterials Advances 2024;Jan(156):213722 [ Show Abstract ]
Noninvasive lung drug delivery is critical for treating respiratory diseases. Pluronic-based copolymers have been used as multifunctional materials for medical and biological applications. However, the Pluronic F127-based hydrogel is rapidly degraded, adversely affecting the mechanical stability for prolonged drug release. Therefore, this study designed two thermosensitive copolymers by modifying the Pluronic F127 terminal groups with carboxyl (ADF127) or amine groups (EDF127) to improve the viscosity and storage modulus of drug formulations. β-alanine and ethylenediamine were conjugated at the terminal of Pluronic F127 using a two-step acetylation process, and the final copolymers were characterized using 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectra. According to the 1H NMR spectra, Pluronic F127 was functionalized to form ADF127 and EDF127 with 85 % and 71 % functionalization degrees, respectively. Rheological studies revealed that the ADF127 (15 wt%) and EDF127 (15 wt%) viscosities increased from 1480 Pa.s (Pluronic F127) to 1700 Pa.s and 1800 Pa.s, respectively. Furthermore, the elastic modulus of ADF127 and EDF127 increased, compared with that of native Pluronic F127 with the addition of 5 % mucin, particularly for ADF127, thereby signifying the stronger adhesive nature of ADF127 and EDF127 with mucin. Additionally, ADF127 and EDF127 exhibited a decreased gelation temperature, decreasing from 33 °C (Pluronic F127 at 15 wt%) to 24 °C. Notably, the in vitro ADF127 and EDF127 drug release was prolonged (95 %; 48 h) by the hydrogel encapsulation of the liposome-Bdph combined with mucin, and the intermolecular hydrogen bonding between the mucin and the hydrogel increased the retention time and stiffness of the hydrogels. Furthermore, ADF127 and EDF127 incubated with NIH-3T3 cells exhibited biocompatibility within 2 mg/mL, compared with Pluronic F127. The nasal administration method was used to examine the biodistribution of the modified hydrogel carrying liposomes or exosomes with fluorescence using the IVIS system. Drug accumulation in the lungs decreased in the following order: ADF127 > EDF127 > liposomes or exosomes alone. These results indicated that the carboxyl group-modified Pluronic F127 enabled well-distributed drug accumulation in the lungs, which is beneficial for intranasal administration routes in treating diseases such as lung fibrosis.
Yamasaki,K., Dantam,J., Sasanuma,K., Hisamura,R., Mizuno,Y., Hui,A., Jones,L.
Impact of in vitro lens deposition and removal on bacterial adhesion to orthokeratology contact lenses
Contact Lens Anterior Eye 2024;47(2):102104 [ Show Abstract ]
Purpose
The purpose of this study was to explore the impact of several contact lens (CL) care solutions on the removal of proteins and lipids, and how deposit removal impacts bacterial adhesion and solution disinfection.
Methods
Lysozyme and lipid deposition on three ortho-k (rigid) and two soft CL materials were evaluated using an ELISA kit and gas chromatography respectively. Bacterial adhesion to a fluorosilicone acrylate material using Pseudomonas aeruginosa with various compositions of artificial tear solutions (ATS), including with denatured proteins, was also investigated. The impact of deposition of the different formulations of ATS on biofilm formation was explored using cover slips. Finally, the lysozyme and lipid cleaning efficacy and disinfection efficacy against P. aeruginosa and Staphylococcus aureus of four different contact lens care solutions were studied using qualitative analysis.
Results
While maximum lysozyme deposition was observed with the fluorosilicone acrylate material (327.25 ± 54.25 µg/lens), the highest amount of lipid deposition was recorded with a fluoro-siloxanyl styrene material (134.71 ± 19.87 µg/lens). Adhesion of P. aeruginosa to fluorosilicone acrylate lenses and biofilm formation on cover slips were significantly greater with the addition of denatured proteins and lipids. Of the four contact lens care solutions investigated, the solution based on povidone-iodine removed both denatured lysozyme and lipid deposits and could effectively disinfect against P. aeruginosa and S. aureus when contaminated with denatured proteins and lipids. In contrast, the peroxide-based solution was able to inhibit P. aeruginosa growth only, while the two multipurpose solutions were unable to disinfect lenses contaminated with denatured proteins and lipids.
Conclusion
Bacterial adhesion and biofilm formation is influenced by components within artificial tear solutions depositing on lenses, including denatured proteins and lipids, which also affects disinfection. The ability of different solutions to remove these deposits should be considered when selecting systems to clean and disinfect ortho-k lenses.